Markscheme

November 2015

Calculus

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.

$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to RM $^{\text {™ }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2015". It is essential that you read this document before you start marking.
In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR).
A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) consider upper or lower limits

M1
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 1=1(=f(0)), \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(1-x)=1(=f(0)) \quad$ A1
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)$ so f is continuous $\quad \boldsymbol{A G}$
(b) $\quad \lim _{h \rightarrow 0^{-}} \frac{1-1}{h}=0$

M1A1
$\lim _{h \rightarrow 0^{+}} \frac{1-h-1}{h}=\lim _{h \rightarrow 0^{+}}(-1)=-1$
Note: Award M1 for an attempt to find limits in either case.
$\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h} \neq \lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}$ so f is not differentiable $\quad \boldsymbol{A G}$
Note: Award M1A1A0 for correct differentiation of left and right sides, ONLY if limits then used to show that both functions have different limits.
2.
(a) $f^{\prime}(x)=\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x$
M1A1
$f^{\prime \prime}(x)=\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x-\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x=2 \mathrm{e}^{x} \cos x$
$=2\left(\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x-\mathrm{e}^{x} \sin x\right)$
$=2\left(f^{\prime}(x)-f(x)\right)$
(b) $\quad f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=2(1-0)=2$
(M1)A1
Note: Award $\boldsymbol{M} \mathbf{1}$ for attempt to find $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0)$.
$f^{\prime \prime \prime}(x)=2\left(f^{\prime \prime}(x)-f^{\prime}(x)\right)$
$f^{\prime \prime \prime}(0)=2(2-1)=2, f^{I V}(0)=2(2-2)=0, f^{V}(0)=2(0-2)=-4$ A1
so $f(x)=x+\frac{2}{2!} x^{2}+\frac{2}{3!} x^{3}-\frac{4}{5!} x^{5}+\ldots$
(M1)A1
$=x+x^{2}+\frac{1}{3} x^{3}-\frac{1}{30} x^{5}+\ldots$
3. (a) if $n=7$ then $7!>3^{7}$
so true for $n=7$
assume true for $n=k$
so $\mathrm{k}!>3^{k}$
consider $n=k+1$
$(k+1)!=(k+1) k!\quad \boldsymbol{M 1}$
$>(k+1) 3^{k}$
$>3.3^{k}$ (as $k>6$)
$=3^{k+1}$
hence if true for $n=k$ then also true for $n=k+1$. As true for $n=7$,
so true for all $n \geq 7$.
Note: Do not award the $\boldsymbol{R} \mathbf{1}$ if the two \boldsymbol{M} marks have not been awarded.
(b) consider the series $\sum_{r=7}^{\infty} a_{r}$ where $a_{r}=\frac{2^{r}}{r!}$

R1

Note: Award the $\boldsymbol{R 1}$ for starting at $r=7$.
compare to the series $\sum_{r=7}^{\infty} b_{r}$ where $b_{r}=\frac{2^{r}}{3^{r}}$
M1
$\sum_{r=1}^{\infty} b_{r}$ is an infinite Geometric Series with $r=\frac{2}{3}$ and hence converges
Note: Award the A1 even if series starts at $r=1$.
as $\mathrm{r}!>3^{r}$ so $(0<) a_{r}<b_{r}$ for all $r \geq 7$
M1R1
as $\sum_{r=7}^{\infty} b_{r}$ converges and $a_{r}<b_{r}$ so $\sum_{r=7}^{\infty} a_{r}$ must converge
Note: Award the $\boldsymbol{A 1}$ even if series starts at $r=1$.
as $\sum_{r=1}^{6} a_{r}$ is finite, so $\sum_{r=1}^{\infty} a_{r}$ must converge
Note: If the limit comparison test is used award marks to a maximum of R1M1A1MOAOR1.
4. (a)

$\boldsymbol{A 1}$ for upper rectangles, $\boldsymbol{A 1}$ for lower rectangles, $\boldsymbol{A 1}$ for curve in between with $0 \leq x \leq 1$
hence $\frac{1}{5} \sum_{r=1}^{5} f\left(\frac{r}{5}\right)<\int_{0}^{1} f(x) \mathrm{d} x<\frac{1}{5} \sum_{r=0}^{4} f\left(\frac{r}{5}\right)$
(b) attempting to integrate from 0 to 1
$\int_{0}^{1} f(x) \mathrm{d} x=[\arctan x]_{0}^{1}$
$=\frac{\pi}{4}$
attempt to evaluate either summation
$\frac{1}{5} \sum_{r=1}^{5} f\left(\frac{r}{5}\right)<\frac{\pi}{4}<\frac{1}{5} \sum_{r=0}^{4} f\left(\frac{r}{5}\right)$
hence $\frac{4}{5} \sum_{r=1}^{5} f\left(\frac{r}{5}\right)<\pi<\frac{4}{5} \sum_{r=0}^{4} f\left(\frac{r}{5}\right)$
so $2.93<\pi<3.33$
A1A1
Note: Accept any answers that round to 2.9 and 3.3.

Question 4 continued
(c) EITHER
recognise $\sum_{r=0}^{n-1}(-1)^{r} x^{2 r}$ as a geometric series with $r=-x^{2}$
sum of n terms is $\frac{1-\left(-x^{2}\right)^{n}}{1--x^{2}}=\frac{1+(-1)^{n-1} x^{2 n}}{1+x^{2}}$
OR
$\sum_{r=0}^{n-1}(-1)^{r}\left(1+x^{2}\right) x^{2 r}=\left(1+x^{2}\right) x^{0}-\left(1+x^{2}\right) x^{2}+\left(1+x^{2}\right) x^{4}+\ldots$
$+(-1)^{n-1}\left(1+x^{2}\right) x^{2 n-2}$
M1
cancelling out middle terms M1
$=1+(-1)^{n-1} x^{2 n}$
(d) $\sum_{r=0}^{n-1}(-1)^{r} x^{2 r}=\frac{1}{1+x^{2}}+(-1)^{n-1} \frac{x^{2 n}}{1+x^{2}}$ integrating from 0 to 1
$\left[\sum_{r=0}^{n-1}(-1)^{r} \frac{x^{2 r+1}}{2 r+1}\right]_{0}^{1}=\int_{0}^{1} f(x) \mathrm{d} x+(-1)^{n-1} \int_{0}^{1} \frac{x^{2 n}}{1+x^{2}} \mathrm{~d} x$
$\int_{0}^{1} f(x) \mathrm{d} x=\frac{\pi}{4}$
so $\pi=4\left(\sum_{r=0}^{n-1} \frac{(-1)^{r}}{2 r+1}-(-1)^{n-1} \int_{0}^{1} \frac{x^{2 n}}{1+x^{2}} \mathrm{~d} x\right)$
5. (a) gradient of f at $(1,0)$ is $1-0^{2}=1$ and the gradient of g at $(1,0)$
is $0-1^{2}=-1$

A1
so gradient of normal is 1 A1
$=$ Gradient of the tangent of f at $(1,0)$ AG
[2 marks]
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}-y=-x^{2}$
integrating factor is $\mathrm{e}^{\int-1 d x}=\mathrm{e}^{-x}$ M1
$y \mathrm{e}^{-x}=\int-x^{2} \mathrm{e}^{-x} \mathrm{~d} x$ A1
$=x^{2} \mathrm{e}^{-x}-\int 2 x \mathrm{e}^{-x} \mathrm{~d} x$ M1
$=x^{2} \mathrm{e}^{-x}+2 x \mathrm{e}^{-x}-\int 2 \mathrm{e}^{-x} \mathrm{~d} x$
$=x^{2} \mathrm{e}^{-x}+2 x \mathrm{e}^{-x}+2 \mathrm{e}^{-x}+c$ A1
$\Rightarrow g(x)=x^{2}+2 x+2+c \mathrm{e}^{x}$
$g(1)=0 \Rightarrow c=-\frac{5}{\mathrm{e}}$
$\Rightarrow g(x)=x^{2}+2 x+2-5 \mathrm{e}^{x-1}$
(c) use of $y_{n+1}=y_{n}+h f^{\prime}\left(x_{n}, y_{n}\right)$
$x_{0}=1, y_{0}=0$
$x_{1}=1.2, y_{1}=0.2$
$x_{2}=1.4, y_{2}=0.432$
(M1)(A1)
$x_{3}=1.6, y_{3}=0.67467 \ldots$
$x_{4}=1.8, y_{4}=0.90363 \ldots$
$x_{5}=2, y_{5}=1.1003255 \ldots$
answer $=1.10033$

Note: Award $\mathbf{A O}$ or $\mathbf{N 1}$ if 1.10 given as answer.
(d) at the point $(1,0)$, the gradient of f is positive so the graph of f passes into the first quadrant for $x>1$
in the first quadrant below the curve $x-y^{2}=0$ the gradient of f is positive $\boldsymbol{R} \mathbf{1}$ the curve $x-y^{2}=0$ has positive gradient in the first quadrant if f were to reach $x-y^{2}=0$ it would have gradient of zero, and therefore would not cross

Question 5 continued
(e) (i) and (ii)

Note: Award A1 for 3 correct isoclines.
Award A1 for f not reaching $x-y^{2}=0$.
Award A1 for turning point of f on $x-y^{2}=0$.
Award $\boldsymbol{A 1}$ for negative gradient to the left of the turning point.
Note: Award A1 for correct shape and position if curve drawn without any isoclines.

